Fuzzy Principal Component Regression (FCPR) for Fuzzy Input and Output Data

نویسندگان

  • Jih-Jeng Huang
  • Gwo-Hshiung Tzeng
  • Chorng-Shyong Ong
چکیده

Although fuzzy regression is widely employed to solve many problems in practice, what seems to be lacking is the problem of multicollinearity. In this paper, the fuzzy centers principal component analysis is proposed to first derive the fuzzy principal component scores. Then the fuzzy principal component regression (FPCR) is formed to overcome the problem of multicollinearity in the fuzzy regression model. In addition, a numerical example is used to demonstrate the proposed method and compare with other methods. On the basis of the results, we can conclude that the proposed method can provide a correct fuzzy regression model and avoid the problem of multicollinearity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

Two-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output

‎In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed‎. ‎In this regard‎, ‎ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients‎. . ‎To evaluate the proposed regression model‎, ‎we introduce the fu...

متن کامل

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

متن کامل

Evaluation of hybrid fuzzy regression capability based on comparison with other regression methods

In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...

متن کامل

FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS

This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2006